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Abstract— Scaling up the software system on service robots
increases the maintenance burden of developers and the risk of
resource contention of the computer embedded on robots. As a
result, developers spend much time on configuring, deploying,
and monitoring the robot software system; robots may utilize
significant computer resources when all software processes are
running. We present Rorg, a Linux container-based scheme to
manage, schedule, and monitor software components on service
robots. Although Linux containers are already widely-used in
cloud environments, this technique is challenging to efficiently
adopt in service robot systems due to multi-tasking, resource
constraints and performance requirements. To pave the way
of Linux containers on service robots in an efficient manner,
we present a programmable container management interface
and a resource time-sharing mechanism incorporated with the
Robot Operating System (ROS). Rorg allows developers to
pack software into self-contained images and runs them in
isolated environments using Linux containers; it also allows
the robot to turn on and off software components on demand
to avoid resource contention. We evaluate Rorg with a long-
term autonomous tour guide robot: It manages 41 software
components on the robot and relieved our maintenance burden,
and it also reduces CPU load by 45.5% and memory usage by
16.5% on average.

I. INTRODUCTION

Robotic research and application are advancing at a high
pace in recent years, and service robots have started to
enter the consumer market and assist human at home and
offices [1]. Whereas deploying service robots is becoming
easier, the robot systems themselves are becoming more
complex [2]. From our previous experience, a tour guide
robot for human-robot interaction (HRI) research in a uni-
versity office building consists of about 65 software pro-
grams for face recognition, voice recognition, navigation, and
various other tasks [3]; autonomous driving vehicles have
even more components for localization, pedestrian detection,
mission planning, motion planning, and so on [4]. As a robot
system evolves and expands, the complexity of the software
components is becoming a more pressing issue that in turn,
challenges scaling up.

Developing software for robot applications has two pri-
mary challenges: maintenance burdens and resource lim-
itations. First, when the number of software components
increases, organizing, deploying, and monitoring them be-
comes tedious and error-prone [5], [6], [7]. Second, com-
putationally intensive programs use much of the computing
resources in the on-board computer [8], [9]. They challenge
scaling up since a service robot can only carry a computer
with moderate processing power and memory capacity due
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Fig. 1. TritonBot [3]: a Rorg-powered long-term autonomous tour guide
robot that chats with people and navigates to introduce places of interest
in a university office building. We use Rorg to manage the 41 software

components in TritonBot. Rorg only runs the components that are needed
and shuts them down when they are idle to save computing resources.

to power and weight considerations. Efforts have been put

into tackling these issues, but the infrastructure side of robot

systems has only received limited attention.

Recently, the Linux container has become a popular tool
to deploy software in data centers and the cloud [10], [11],
[12]. This technique allows developers to pack software and
dependencies into self-contained images, deploy them onto
different targets with minimal configuration, and isolate them
from the host system to varying degrees. This technique also
opens an opportunity to mitigate the maintenance burden and
resource limitation in service robots (Section II). However,
few research and commercial service robots currently benefit
from Linux containers due to three primary reasons:

e Most of the current research and commercial service
robots use certain middleware or framework [13], [14],
[15] to facilitate loosely-coupled architecture design, and
among them ROS [13] is the most popular representative.
While ROS-based software can run inside containers in
theory, there is limited experience to containerize the
robotic software.

e Service robots have numerous software components with
complex relationships, and not all of them are in use
at the same time. Although existing tools can leverage
Linux containers to provide interfaces for one component
to start/stop/monitor another, few take the runtime pattern
of programs into account.

e Few Linux container orchestration tools are designed for
environments with tight overall resource budget, as they
target for data centers and cloud platforms [12] where
almost unlimited computing resources are available.

Our goal is to enable efficient software organization



and scheduling on autonomous service robots in a high-
performance and scalable manner. We propose Rorg, a toolkit
that leverages Linux containers to manage and schedule soft-
ware on service robot. Rorg makes three key contributions:
Rorg adopts a Linux container engine, Docker [10] to
run robot software in individual containers. Rorg works
with ROS [13], the de facto standard robotic middleware.
It provides default configurations to run ROS software
without modification, and we provide an example setup of
a fully-functional tour guide robot application with Rorg.
Rorg organizes the robot software into multiple Linux
containers and models the static and dynamic relationships
between them. Rorg provides an interface to create, query,
update, delete, start, stop, and restart these containers
manually or programmatically.

Rorg allows the software components to time-share com-
puting resources: It pauses or shuts down inactive services
to save computing resources but reactivates them when
they are required for an upcoming task. Rorg monitors the
system and keeps the resources utilization at a reasonable
level.

We evaluate Rorg on a long-term autonomy tour guide
robot, TritonBot (Figure 1). Rorg and its early prototype
helped us to keep the robot working for over six months. The
tour guide robot went through 126 software version updates
and 71 configuration changes. Rorg now manages 41 services
(containers) on the robot. The robot consumes 89.4% of CPU
time and 3.41 GB of memory on average without Rorg. With
Rorg, the average CPU drops to 48.7% and the memory
usage is 2.85 GB. Although web service and data center
applications have wildly adopted container technology, Rorg
addresses the specific challenge on service robots: multi-
purpose systems with limited computing resources but have
high performance/responsiveness requirements.

The rest of this paper is organized as following: Section II
discusses related work and the unique challenges of service
robot software management. Section III presents the design
of Rorg and introduces its features to ease software manage-
ment and avoid resource contention. Section IV evaluates
Rorg with a real tour guide service robot and measures its
performance, and finally Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Linux containers (or operating-system-level virtualization
in general) have received much attention in data centers
and cloud applications recently [16]. Relying on operating
system kernel features, Linux containers provide isolated
runtime environment with minimal performance overhead.
They also provide a convenient approach to build, deploy,
and run applications on different machines. Unlike hypervi-
sors or virtual machines that run fully virtualized kernels,
Linux container leverages the kernel of the host and thus
is much lighter weighted [17]. Popular Linux container
engines include Docker [10], LXD [18], and others. Despite
different branding and user interface, they all exploit the
same underlying Linux kernel features such as namespaces
and control groups, and thus offer similar performance.
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Fig. 2. Robot systems are similar to data centers. Each hierarchy in

a service robot can find its counterparts in a data center, except for the
“software management system.” We built Rorg to fill in the gap and address
the unique challenges of software management in service robots where
resources are sacred.

Prior research on applying Linux containers to robots.
Previous research applied Linux containers to robotics to
some extent. White et al. use Linux containers to run
ROS with Docker [19], but their examples do not illustrate
actual challenges on building and maintaining a moderate-
scale service robot system. Mabry et al. exploit Docker
to deploy software on a maritime robot [20], but their
approach only applies to application-specific robot and does
not scale up to fit the more complex software system of
service robots. Avalon [21] is a crowd-robot scheduler that
distributes tasks to multiple robots; it also leverages Linux
containers to encapsulate the applications, but it does not
address challenges on a standalone service robot. Cognitive
Interaction Toolkit (CITk) [22] adopts Linux containers to
construct and run robot simulation experiments; a later work
RoboBench [23] is a benchmark suite based on CITk that re-
produces robotic simulation on workstations. SwarmRob [24]
is a toolkit to share experimental heterogeneous robots using
Linux containers. However, none of CITk, RoboBench, or
SwarmRob was tested on physical robots.

Difference between service robots and data center appli-
cations where Linux containers are used. Robot software
systems are similar to data center applications in some
aspects. Modern applications in data centers are often built
with the “microservices” pattern: individual microservices
communicate and cooperate with each other to deliver greater
functionality [25] — the same pattern also exists in ROS-
based robot system design. Besides, other hierarchies in a
robotic system can also find their counterparts in data center
applications, as shown in Figure 2. However, most service
robots do not have a “management system” counterpart to
data centers, and that is where Rorg comes in.

In data centers, the main challenge for a software man-
agement system is redundancy. At Google, Borg [26] runs
two extra instances of each microservice in their planet-scale
computer system to tolerate the failure of one instance while
updating another instance [25]; it distributes the instances
across different physical locations to increase reliability.
Similarly, Kubernetes [12] and Mesos [27] are popular open-
source software management systems that combine Linux
containers with sophisticated scheduling to provide load-
balancing, to avoid single point failures, and to scale-up when



needed. However, the challenges of software management in
service robots are distinct to that in data centers, as discussed
in Section L.

In summary, no existing solutions address the unique
challenges of software management on service robots —
multi-purpose systems with limited computing resources yet
have high performance/responsiveness requirements.

III. RORG DESIGN

To address the aforementioned challenges, we propose
Rorg, a software manager toolkit for service robots. In
essence, Rorg is a set of programs that receives requests from
developers or programs, and creates, starts, pauses, stops, and
removes software components on a service robot at an appro-
priate time. Rorg consists of three design principles: First,
Rorg is effortless to use; it containerizes robotic applica-
tions (ROS-based in particular) with minimal configuration.
Second, Rorg is scalable; it targets managing moderate and
large-scale robot applications up to hundreds of programs
or ROS nodes. Third, Rorg avoids the risk of computer
resources contention in the robot; it eliminates unnecessary
computation and improves robot responsiveness.

A. Linux Containers for Robotic Applications

Linux container interface for robotic applications. Rorg
leverages Docker [10] as its underlying backend to container-
ize robotic software, but it provides default configurations to
run ROS-based software with minimal configuration since
currently ROS is the most popular robotic middleware.
Because ROS applications are not designed to cross network
address translation (NAT) devices, Rorg by default uses the
host computer’s network stack for the containers to exclude
default communication barriers that come with Docker and
extra performance overhead in multiple networking stacks.
In addition, Rorg provides a “driver” option to configure
microservices that talks to sensors/actuators with higher
privilege to access host peripherals. Rorg monitors these
programs for the unexpected restart, and it asks for extra
confirmation when restarting these programs manually. Last
but not least, Rorg still opens all the lower-level Docker
parameters to the users, but Rorg alerts users to potential
configuration error. In short, Rorg makes Linux container
easier to use for robotic applications without sacrificing its
original functionality.

Efficient container image hierarchies. Rorg enables effi-
cient deep-hierarchy container image building. Docker allows
the user to pack a program along with its dependencies into
a standalone “image”’; these images can form a hierarchy to
save build time or disk space when they share common parts.
Figure 3 shows part of the images hierarchy in a service
robot. A deep hierarchy allows each application image to
use an appropriate base image to maximize libraries reuse
and minimize the chance of conflicts, but it also leads to
a challenge: the developer needs to build the images in a
correct order for the end image to reflect the updates in the
hierarchy. Rorg provides a script to automate the task: it sorts
all of the images in a topological order of the dependency
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Fig. 3.  Container images (and their hierarchy) that support a robot
receptionist and tour guide [3]. By carefully arranging the hierarchy, each
application can use a most appropriate “base image” and save build time
and disk space without creating conflicts. Rorg provides tools that help the
developer to build the images with a deep hierarchy correctly.

graph, pulls external dependencies, and then builds depen-
dent images before the children images. Therefore, Rorg
retains Docker’s optimization such as caching while building
the images, but it builds the images correctly without a larger
infrastructure such as a continuous integration system.

Linux containers for software development. Rorg lever-
ages Linux containers to simplify robotic software devel-
opment. Rorg comes with a script that prepares a seamless
development environment inside a container, which is based
on the same base image for deployment. The unified envi-
ronment eliminates the inconsistency between development
and deployment, which helps the developer to prepare for
deployment at the very beginning. Since the development
environment is encapsulated inside a container, the developer
can create a fresh environment with minimal effort in case
the development environment is contaminated.

Configuration history tracking. Rorg keeps the full history
of an application for later review or postmortem analysis.
It records the full log of the changes to Docker container
in machine-readable “protobuf” [28] format. Also, Rorg
leverages Docker’s “mount” feature to map a directory on the
host machine to a container, so that the developers can store
runtime configurations like “roslaunch” files to a version
control system (VCS) and attach them to the container. The
history in VCS combined with the Rorg log allows the
developers to recover the state of a robot to any previous
checkpoint. As an example, we provide our TritonBot tour
guide system along with Rorg to demonstrate these practices.
Configuring Rorg. The benefits of Rorg are not free — the
developer needs to write extra code to configure Rorg. Since
Rorg runs all programs inside Docker containers, deploying
a robotic program with Rorg requires creating a Docker
image and defining runtime parameters. Seemingly an extra
effort, the image blueprint (Dockerfile) and the runtime
configuration actually serve as a document to reproduce the
execution environment, which helps organizing robotic soft-
ware from another perspective; many readily available ROS
images and examples further make this process easier [19].

The above Rorg features exploit most of Docker’s poten-
tials to build, ship, and deploy ROS-based robotic software;
we plan to extend Rorg support to other robotic middleware
in the future. These features keep indivudal robotic software



components organized and lighten developer’s burden. The
next section will discuss Rorg’s effort to organize robotic
software system in a whole and avoid resource contention.

B. Scalable Robotic Software Organization

Basic element in Rorg. The basic element in Rorg is a
service. Usually, a service represents one container instance:
for example, each of the localization, navigation, and face
recognition software is a service. The “service” concept is
consistent with “microservice” in data center applications,
and it is similar to ROS “nodes” or Linux processes in terms
of granularity. Rorg does use non-regular service to simplify
its semantics (for example, developer is a meta-service
that represents a developer’s actions, which will be discussed
later in this section), but regular services are created with
Docker images and runtime configurations. Rorg provides
interfaces to create, query, update, and remove a service
programmatically or through a command-line interface.

The relationship between the Rorg elements. Although
each service differs from each other in terms of the role
in the system, Rorg sees them as identical in orchestration.
A service may “request” another: a request is a relation-
ship between services — the requester service will use the
requested services until it releases the request. Rorg only
keeps requested services alive and ceases services that are
not requested by any other services. For example, when the
robot needs to talk, a behavioral service can request the
speak-text service before invoking voice-synthesize. For an
active service with implicit dependencies, Rorg automatically
requests the dependent services. For example, a navigation
service must always request localization service because
the robot cannot navigate correctly without awareness of
its position. A newly created service is not active until
another service “requests” it. When terminating a service,
Rorg also automatically releases all its owned requests to
prevent “requests leak.”

C. Time-sharing Computing Resources

Rorg avoids resources contention on the on-robot com-
puter by time-sharing computing resources. Because the
robot carries limited computing power, the resource-
contented computer should allocate the appropriate amount
of resources on programs’ demands. With the robotic soft-
ware informing Rorg of the components usage, Rorg enables
the required services and ceases or pauses inactive services,
and thus reduces resources usage.

Figure 4 demonstrates a simplified Rorg-powered tour
guide robot example that detects human faces, chats with
people, and offers tours to the visitors. The robot takes
five consecutive actions in its work cycle; Rorg manages
services accordingly to avoid resources contention. (D In
the beginning, the human developer requests the behavioral
service that controls the overall behavior of the robot through
a command-line program. The requester is set to a developer
meta-service that is always assumed active. @ Then the
robot becomes autonomous, and behavioral requests face-
recognition to detect human faces. @ When the robot sees
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Fig. 4. Services in a receptionist and tour guide robot [3]. Each service
is a Linux container; Rorg itself also runs inside a container, but it is not
a service. The services contact Rorg to start or stop their peers: (1) The
developer makes the robot autonomous. (2) The robot starts to detect visitors.
(® The robot chats with a visitor. (4) The robot moves around to guide a
tour. (3) The robot returns to its standby state.

a visitor, behavioral requests voice-recognition and speak-
text to chat with the visitor. @ When the visitor decides to
take a tour with the robot, the behavioral requests naviga-
tion, which implicitly requests localization (for robot pose
estimation) to move the robot around. The behavioral also
releases its previous request to face-recognition, as the robot
does not detect human face during the tour. & After the
tour, behavioral releases all of the services but requests face-
recognition to return to the initial state. When navigation
becomes inactive, Rorg automatically releases localization
as it was only requested by navigation. Note localization,
navigation, and face-recognition are all computationally in-
tensive. In such setup, the robot does not waste CPU time
on face-recognition during navigation, nor does it assign any
resources for localization during the waiting state.

Programming for time-sharing. Using Rorg for time-
sharing computing resources is easy in general, but it is
complicated for certain services. For example, the developer
can specify an implicit dependency between navigation and
localization when creating navigation service, thus localiza-
tion will always start when navigation becomes active. Rorg
provides several interfaces and client libraries, including
ROS-service interfaces, general remote procedure call (RPC)
interfaces [29], Python, and C++ libraries to help developers
to write code to send/cancel Rorg requests for services with
dynamic behavior (e.g., behavioral service). Besides, we are
investigating more automated methods to make Rorg more
programmer-friendly.

Alternatives for avoiding resource contention. It is worth
pointing out Rorg’s time-sharing method is not the only
way to reduce resource usage on service robots. A common
option is to offload computation, but it is limited by latency
constraints and privacy concerns on service robots. Another
option is to start and stop individual Linux processes, but
Linux containers are much cleaner (e.g. the developers are
free from accidentally leaving orphan processes running) and
provide more functionality (e.g. pausing a process without
sending SIGSTOP). A third option is to design an event-
driven system architecture — it can avoid unnecessary com-
putation without shutting down any components — but such
option usually involves a total system overhaul; besides, by



TABLE I

GENERAL TRITONBOT MAINTENANCE WORKFLOW WITH AND WITHOUT RORG.

Maintenance Task

Without Rorg

With Rorg

Deploy a new

software component.

Copy source files to the robot; install the dependencies;
compile the software; fix potential dependencies errors;
write a startup script.

Write and test a Dockerfile; build and upload the
container image to a “Docker registry”; use a Rorg
command-line tool to create a new service.

Update a software
component.

Remove original software and residuals but keep
configuration and reusable data files; install the new version;
update configuration files.

Rebuild and update the original Dockerfile; run a Rorg
command-line tool to refresh the update.

Rollback a software

Remove original software and residuals; reinstall the old

Rollback configuration files; run a Rorg command-line tool

component. version; rollback configuration files. to rollback.
Update software Locate and update the configuration in scattered places; kill Update the configuration in a unified location; run a Rorg
configuration. the program process tree; restart the program. command-line tool to restart the service.

Develop software.

Install the same libraries and tools on the robot to the
developer workstation; clean up or even reinstall the system
in case of library contamination; before deployment, fix the
inconsistency between deployment and development

Use the same container image (with [ibraries and tools) to
develop on workstations or robots; recreate the container
with Rorg to restart from fresh; not to worry about
inconsistency between deployment and development

environments

environments

often ceasing services, Rorg provides an opportunity for them
to restart refresh frequently, as Google points out “a slowly
crash looping task is usually preferable to a task that hasn’t
been restarted at all [25].”

IV. EVALUATION

We test Rorg using our TritonBot system, a real long-
term autonomous service robot [3]. This section evaluates
Rorg from two aspects: First, to show Rorg’s effectiveness
on software maintenance, we compare our daily workflow
before and after introducing Rorg to manage the software
in TritonBot. Second, to show how Rorg reduces the risk
of resource contention, we compare the CPU and memory
usage with and without Rorg.

A. Experimental Setup

Rorg targets at service robots that perform different tasks
at different times. In previous work we built TritonBot to
serve as building receptionist and a tour guide robot [3].
TritonBot stands to face the building entrance and continu-
ously detects faces with its camera. When TritonBot sees a
visitor, it will greet the person by name if it could recognize
the face, or it will ask the visitor’s name and associate the
name with the face. TritonBot also offers trivia questions and
navigates with the visitors and introduces places of interest
in the building; it uses a leg tracker to make sure the visitor
is following it. The behavior of TritonBot is controlled by a
finite state machine.

TritonBot is built on a commercial mobile robot plat-
form “Freight Robot” [30]. It senses and interacts with the
environment using a camera, a directional microphone, a
loudspeaker, three laser scanners, and a mobile platform with
two differential-drive wheels. The core of the platform is
a computer composed by an Intel i5-4570S CPU (4 cores,
4 threads) operating at 3.20GHz, 16 GB memory, and 1
TB solid-state storage. Seemingly outdated, the computer
was a medium-configuration when the two-year-old robot
was manufactured. We believe TritonBot represents service
robots in the middle of their lifecycles. TritonBot’s soft-
ware system consists of 65 ROS programs, and it heavily
leverages open-source and third-party software to support
its tasks. For example, Openface [31] pipelines human
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faces detection and the face similarity calculation; an open-
source leg tracker [32] tracks people around the robot;
Cartographer [33] provides simultaneous localization and
mapping (SLAM) for the robot, and the ROS navigation
stack “move base” [34] navigates the robot around. TritonBot
also uses cloud service like Google Cloud Speech API [35]
to transcribe speech audio to text.

B. Managing Software System

The complexity of TritonBot system puts a lot of main-
tenance burden on the developers. Many of these software
components depend on different libraries (the “dependency
hell”), and there are many runtime parameters, configura-
tions, and other supporting files associated with each of
these components. As the robot system scales up, keeping
the system running becomes a tedious and error-prone task.

Table I compares our workflows of general maintenance
tasks with and without Rorg. With Rorg, we manage our
robotic software in a much cleaner and organized manner.
Since the maintenance effort is a subjective concept and hard
to quantify, we leave the decision of whether Rorg helps
the developers in operating and evolving the system to the
readers.

At this time, TritonBot is running 65 ROS nodes as 41
Rorg services. We group some tightly-coupled ROS nodes
together as a single Rorg services (for example, the car-
tographer node and the accompanying occupancy-grid-map
converter). In the past year, we pushed 126 software version
updates and 71 configuration changes to TritonBot with the
help of Rorg.

C. Avoiding Resources Contention

Many of the programs in TritonBot are resources intensive.
When the robot is operating without Rorg, the average CPU
usage is often around 90%, the memory utilization occasion-
ally reaches 100% due to a potential memory leak. Therefore,
TritonBot is on the borderline of resource contention where
insufficient performance slows down the robot. As a result,
the response latency of the robot is creating an unsatisfactory
user experience — the robot only moves a few seconds after
it says “please follow me.”

We evaluate the decrease in resource usage with Rorg
using three setups: simulation, emulation, and deployment.
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every moment is shown along with the CPU/memory usage. Only taking
active time into account, Rorg brings 37.2% reduction to CPU usage and
40.2% reduction to memory usage.

Simulation. In the simulation, we feed the state machine
trace (state transition log) to a simulator and assign empirical
CPU and memory usage (medium number collected from a
month-long deployment) to each of the services. The simu-
lation experiment is fast and the result is always consistent,
but it does not reflect the dynamic resources consumption
by a program. We run the state machine trace collected
on TritonBot back on February 6, 2018, a typical day for
TritonBot [3]. The robot was deployed from 10:40 am to
2:40 pm that day, worked for four hours in total. It greeted
the visitors 188 times and guided ten tours. As shown in
Figure 5, the simulation result indicates 52.6% reduction
to CPU usage and 12.5% reduction to memory usage by
introducing Rorg to TritonBot.

Emulation. In the emulation, we run the actual components
on a workstation with the same specs as the robot embedded
computer, but we play back sensor data and discard the
control commands sent to the actuators. The emulation
experiment reflects the dynamic resource allocation of the
programs, and it does not require TritonBot to move when
we are profiling the system. The baseline system has all of
the Rorg services running, but the system with Rorg only
runs the services that are required at the emulated moment.
Figure 6 shows the results from emulation, which reflects
the fluctuation in CPU and memory usage when a service
is starting or stopping. Rorg reduced CPU usage by 37.2%
and memory usage by 40.3% in average in the emulation on
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one hour and collected performance data. Although the events do not align
in the baseline and in the Rorg experiments, the robot gave three tours
and greeted people 30 times in both scenarios. With Rorg there is 45.5%
reduction in CPU usage and 16.5% reduction in memory usage on average.

average.

Deployment. We also deploy Rorg on the real TritonBot
platform to observe its performance. Reduction of resource
usage in deployment is the golden standard to evaluate Rorg’s
performance. However, due to the dynamic nature of the
environment, we can only guarantee similar experimental
conditions in a relatively short period. Figure 7 shows the
variation of resources usage in a 60 minutes TritonBot
deployment. We had the robot guided three tours and greeted
people 30 times during the experiment. Rorg reduced CPU
usage by 45.5% and memory usage by 16.5% during the
deployment on average.

The CPU usage improvements are consistent in three
experiments, but the memory usage differs. We found that
the simulation and emulation correctly reflect CPU usage
by switching on and off CPU-intensive tasks like face
recognition and navigation, but the memory usage is less
accurate because of difference of sensor/actuator drivers and
data playback. Nevertheless, simulation provides a fast way
to evaluate the theoretical benefit of Rorg, and emulation
provides a fair comparison between the baseline and the

system with Rorg.
V. CONCLUSION

Linux containers are widely used in data center and cloud
platforms to help developers to deploy their systems. This
paper presents Rorg, a tool for lifecycle/resource manage-
ment on service robots. Rorg uses Linux containers to ease
developer’s effort to orchestrate microservices on service
robots, and it enables efficient time-sharing resources to
avoid resources contention. We tested Rorg using a service
robot application — TritonBot [3], a receptionist and a tour
guide robot. Experimental results by simulation, emulation,
and deployment show that Rorg reduces 45.5% CPU and
16.5% memory usage. We release Rorg as an open-source
software (available at https://github.com/CogRob/
Rorg). We also provide configurations to build, deploy, and
run TritonBot as an example of using Rorg.

Linux containers have the potential to play a more critical
role in service robots. Our future goal is to apply Linux
containers and other system engineering methods to create
a more reliable and scalable robot system infrastructure and
bridge the gap between robots in research and in real life.
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