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Abstract— Service robots perform flawless demos while their
developers are keeping a close eye, but they often fail when
working autonomously, especially in a long-term deployment.
To study failure modes and human-robot interaction patterns
in long-term deployments, we built TritonBot, a long-term
autonomy robot working as a building receptionist and a tour
guide. It recognizes people’s face, talks to them, and guides
people to the labs and facilities in an office building. This paper
presents the design of TritonBot and the lessons we learned
from the first-month deployment with respect to technical and
human-robot interaction aspects. TritonBot and its variant
BoxBot have worked for 108.7 hours, actively interacted with
people for 22.1 hours, greeted people 2950 times, guided 150
tours, and traveled 9.9 kilometers. We share the components
of TritonBot using an open licence to help the community
to replicate the TritonBot platform and inspire long-term
autonomy and human-robot interaction research.

I. INTRODUCTION

Robot technology has advanced significantly over recent
years, and we have finally reached a milestone where we can
apply these innovations in real-world applications. However,
while robots often perform flawless demos and win applause
under controlled settings with operator’s guidance, they
frequently fail when working for an extensive length of time
in unstructured environments without close supervision [1].
Long-term deployment adds more uncertainties and covers
many corner cases in the technical components or human-
robot interaction behaviors. As a result, long-term autonomy
is a significant challenge that prevents service robots from
entering an office or home environment to assist people.

We present TritonBot, a long-term autonomy robot de-
ployed in an unsupervised open environment. TritonBot
works as a receptionist and a tour guide of a university office
building. It recognizes people’s face, talks to people, and
shows people the labs and facilities in the building. However,
TritonBot is not only another tour guide robot: In addition to
serving the visitors to the building, the systems is used to to
discover failure modes in a long-term deployment of a robot
that actively interact with people in an open environment. Be-
sides, we also plan to use TritonBot as a toolbox to discover
the short-term and long-term interaction patterns between the
robot and humans since the robot receptionist engages in
many interactions every day. Fig. 1 shows TritonBot and its
variant, BoxBot. Despite the difference in the shapes, BoxBot
runs the identical software and exhibits the same behavior
as TritonBot.
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Fig. 1. TritonBot (right) and its variant, BoxBot (left). TritonBot is based
on Fetch Research Edition [2] and BoxBot is a Freight robot with an upper
body made of cardboard boxes. They take turns and work every weekday,
chat with people and navigate with people to introduce place of interest in
an office building.

In the first month deployment, TritonBot and BoxBot re-
ceived much attention from visitors: They have been serving
the guests for 108.7 hours in total, actively talked and walked
with people for 22.1 hours, provided 150 tours, traveled
9901.1 meters, have been listening for 4.0 hours (2, 616
counts) and speaking for 10.7 hours (14, 037 counts). Unlike
other long-term autonomy robots, TritonBot is a standalone
service robot system that actively engages people and draws
people’s attention. It interprets users’ intent only using voice
interaction and talks back to people. With the deployment, we
were able to study potential issues in resilience, scalability,
and learning of a robot system in a dynamic environment. We
released the components in TritonBot under an open source
licence to enable the community to replicate our platform
for long-term autonomy and human-robot interaction (HRI)
research.

This paper is structured as follows: Section II discusses
some existing long-term autonomy robots and other related
work. Section III presents TritonBot’s behavior, components,
and its ability to use as a toolbox for HRI studies. Sec-
tion IV discusses the lessons we learned in both technical
and human-robot interaction aspects of TritonBot from the
first month of deployment. Section V presents a quantita-
tive analysis and statistics on TritonBot’s performance, and
Section VI concludes the paper.

II. RELATED WORK

TritonBot shares its goals with a few pioneering long-
term autonomous systems. Valerie [3], the “Roboceptionist”
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Fig. 2. 2D map of the hallway in the office building. The robot keeps a
standby pose when it is waiting for people. The blue trajectory represents
the route that the robot guides people, and the blue vertex indicates the
places of interest where the robot will stop and introduce.

at the Carnegie Mellon University is an early robot with a
personality that exhibits social competence and remains com-
pelling to interact with for an extended period. CoBots [4]
is a long-term autonomy system that intensively study long-
term mapping, localization, and navigation in an unstructured
environment; they have traveled over 1, 000 km in total
under unstructured environment. The European STRANDS
project [5] deployed four robots for security and elderly care
scenarios and reached a few weeks of autonomy within a
single deployment. BWIBots [6] is a custom-designed multi-
robot platform for AI, robotics, and HRI that aims to be an
always-on, permanent fixture in a university building.

Early tour guide robots like RHINO [7] and Minerva [8]
provided interactive tours to visitors in museums with an
emphasis on robust localization and navigation in a crowded
environment. The SPENCER project [9] investigates social
interaction in a crowded environment with multiple humans,
which is critical in an unsupervised open setting. Kanda et
al. deployed Robovie robots in a corridor of a shopping mall
for five weeks to provide information to the public [10].

Interactive robots have appeared in many other scenarios.
Komatsubara et al. use the Robovie robots in an elementary
school for five weeks with the intent to increase the curiosity
in the science of children [11]. The robot recognizes the face
and asks questions to the students, but it requires operator’s
intervention for speech recognition. Bohus et al. created
a stationary directions robot to study open-world human-
robot interaction [12], and they concluded several failure
modes [13]. Chung et al. studied the Savioke Relay robots
in hotels and created a fast-prototyping tool to program the
robots [14]. Tonkin et al. studied social robots at airports and
discussed design methodology for designing communication
pattern for interactive robots [15].

TritonBot shares a few similarities with these pioneers,
but also has its specialty. TritonBot only interacts with a
human through speech, therefore it receives many unexpected
instructions, and they help the researchers to understand

people’s free expectation on a robot. Also, TritonBot has
long-term memory, recognizes people, and interacts with
people every day, therefore it can collect and analyze com-
munication pattern and histories, which makes it a toolbox
for future system and HRI studies.

III. SYSTEM DESIGN

The TritonBot operates in the hallway of an office build-
ing, discovers passersby with face detection and interacts
with them using speech. This section describes the scenario
of TritonBot deployment and the robot’s behavior, compo-
nents, and its capabilities as a research toolbox.

A. The Tour Guide Scenario

TritonBot works as a receptionist and a tour guide of
Atkinson Hall, a six-story, 250, 000 sq ft building at UC San
Diego. The building is an office building for regular users,
but sometimes hosts meetings, conferences, or events. Fig. 2
shows a map and the surroundings of the area where the robot
is deployed. TritonBot stands in the hallway of the building
facing the entrance at an angle that sets the camera away
from facing the entrance where excessive outdoor sunlight
is coming from. TritonBot continuously detects human faces
in its view, and when it sees a person, it actively engages the
person by greeting him or her, but it gives up if the person
disappears before it finishes a self-introduction monologue.

If TritonBot finds a match of a recently seen face with
a record in its face database, it will greet the person by
name. Otherwise, it starts asking for name and offers a few
trivia questions. Fig. 3 shows an example of the interaction
between TritonBot and a visitor. The quizzes are simple,
but they provide a time frame when the visitor is looking
at the robot. TritonBot continuously collects face samples
while talking to the person and uses the highest-quality face
samples to update its face database. Afterwards, TritonBot
offers a guided tour to the user. If the user accepts the tour,
the robot will show the visitor around and introduce a few
places of interest in the building, including a fast-prototyping
facility with 3D printers, a robot showroom (robot zoo), a
smart home demo room, and a gallery (Fig. 2). If the robot
fails to move to a target, it politely asks people to step back
because it “needs personal space to maneuver.”

We try to keep TritonBot autonomous as much as possible
to study failure cases. TritonBot is programmed to go to a
charging dock when the battery is low, and it returns to work
when it finishes charging. However, in the early deployment,
we closely monitor the robot to prevent any accidents: A
student always sits in the “smart home” room when TritonBot
is actively working. He monitors the robot and manually
overrides the robot control in case of emergency. Although
the student never engaged the emergency stop in the first
month, the working time of the robot was limited to the
student’s schedule.

B. Components in TritonBot

The initial TritonBot and the variant, BoxBot are based
on Fetch Research Edition and Freight robots from Fetch
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[TritonBot]: Good morning. My name is TritonBot. I am a robot
working here at the Contextual Robotics Institute. May I ask what is your
name?
[Human]: My name is April.
[TritonBot]: Nice to meet you, April. I prepared some quiz for you.
Would you like to give them a try?
[Human]: Sure.
[TritonBot]: Where does the president of the United States of America
live?
[Human]: The White House.
[TritonBot]: You got it! The president of the United States of America
lives at the White House in Washington DC. Do you want to try another
question?
[Human]: Yeah.
[TritonBot]: What is the most popular sport throughout the world?
[Human]: I don’t know.
[TritonBot]: No worries. Soccer is the most popular sport throughout
the world. Do you want to try another question?
[Human]: No, thanks. I’m good.
[TritonBot]: Thanks for chatting with me. I feel honored. I am a tour
guide. Can I show you around?
[Human]: Yes, please.
[TritonBot]: Glad to hear that. Please follow me.
(TritonBot moves towards the Prototyping Lab.)
[TritonBot]: We are now in the Prototyping Lab. The prototyping
lab provides prototyping and engineering services to UCSD researchers,
including embedded electronics, mechanical devices, robotic contraptions,
real-time networking software, and 3D printed structures.
(TritonBot moves towards the Robotic Zoo.)
[TritonBot]: Here is the robot zoo. You can see my fellow robot,
Diego-san. He can see people, understand gestures and expressions, and
even learn from people. Diego-san is not the only robot here, many of my
other fellow robots are coming very soon.
(TritonBot introduces a few other locations and
stops at the elevators.)
[TritonBot]: Here is the elevator, and it is our last stop. Thanks for
letting me show you around. Please enjoy your stay. Take care and have a
great day.

Fig. 3. A dialogue between TritonBot and a visitor. TritonBot starts the
dialogue when it sees a face, but gives up if the face disappears during its
self-introduction. When TritonBot matches a face with an acquaintance, it
will greet the person with the name and skip the trivia questions.

Robotics Inc. respectively [2]. BoxBot has a custom upper
body made of cardboard boxes. The cardboard box upper
body allows researchers to change the design or adding new
sensors to the platform with a minimal cost. These two robots
take turns in the deployment, which opens time windows for
hardware maintenance and software upgrade.

TritonBot has onboard embedded computers with x64
processor, and it utilizes many third-party components and
open-source software to accomplish its task. It is running
Robotic Operating System (ROS) Indigo version (released
in 2014) [16]. Openface [17] pipeline detects human faces
in the pictures captured by the camera and converts these
face images to embeddings that are used to calculate the
similarity between two faces. Cartographer [18] provides
localization and mapping for the TritonBot platform, and the
ROS navigation stack provides lower-level control for the
robot to move around. Cloud service comes with excellent
help when an open-source alternative is not available or
does not meet our needs. Google Cloud Speech API [19]
translates speech audio to text with nearly real-time feedback.
TritonBot used an Android tablet for voice synthesis initially,
but we switched to a commercial solution later because of
its superior performance.
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Offer Trivia 
Questions

Offer Tour

Do Trivia Qustions and 
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Fig. 4. The state machine that represents the behavior of TritonBot.
Different color indicates different state categories. The time spent in each
category is shown in Fig. 8.

C. TritonBot for Human-Robot Interaction Studies

TritonBot works closely with people, and the long-term
deployment allows it to meet people and interact with them
over a long timespan. Although the early deployment of
TritonBot is targeting long-term autonomy research only, we
believe TritonBot is capable of distinguishing people and
studying the human-robot interaction behaviors.

Working as a robot receptionist, TritonBot starts inter-
acting with a person when it sees a face, which could
provide an estimation of the age, gender, or other background
information of a person [20]. Since TritonBot works in an
office building, it can see a relatively fixed set of people. In
a long-term deployment, the robot can observe the change
in the way that the same person interacting with the robot.
The robot can also observe a general group of people and
study their interaction with the robot.

The tour guide scenario is a test field for social-aware
navigation research. TritonBot observes the environment
using a laser scanner, a microphone, and a camera, which
provides an estimation of the number of the humans around
and their pose [9]. While a user is following TritonBot during
a tour, the robot observes the relative location between itself,
the person, nearby obstacles, and incoming people, which
allow the robot to learn the rules in social-navigation.

Although people’s curiosity about the robots dominates the
interaction pattern in the early deployment, we expect to see
a noticeable difference in the interaction pattern of TritonBot
and BoxBot in the future and improve the robot shape and
design.

TritonBot is designed as a portable and replicable HRI
research platform, and we open-source TritonBot to provide
a research platform for HRI and long-term autonomy re-
searchers. Most components we built for TritonBot are open-
sourced either as ROS packages or standalone components
and are available at https://github.com/CogRob/
TritonBot.

IV. LESSONS LEARNT FROM EARLY
DEPLOYMENT OF TRITONBOT

In a month-long deployment of TritonBot, we have seen
people enjoy chatting and walking with a robot, but we
have also seen many shortcomings in the system. These
shortcomings include failures and faults, improper or in-
efficient robot operation workflows, and imperfections in
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human-robot interaction behaviors. This section presents the
main lessons we learned from the first-month deployment of
TritonBot.

A. Hardware Failures

Just like any other engineered system, failure is unavoid-
able in robotics. In contrast to software errors, hardware
failures are usually uncommon, but the long-term deploy-
ment extensively tests the system and reveals failure cases.
During the development and deployment of TritonBot, we
encountered a few hardware issues:

1) Battery failure: During our early deployment, the
BoxBot over-discharged its batteries (two 12V lead-acid
batteries), and the failed batteries could only support the
robot for 10 minutes (as opposed to 12+ hours of standby
time in normal condition). We replaced the faulty batteries
and set up a battery monitoring program to prevent battery
from over-discharging.

2) Electrical part failure: The charging port on TritonBot
failed, and the robot attempted many times going back and
forth trying to dock itself to a charging dock when the battery
was low. The student monitoring the robot discovered the
unusual behavior and shutdown the robot program. After that,
we programmed the robot to shutdown itself when its battery
is low and auto-charging fails.

3) Mechanical failure: The connection between a caster
and the base on TritonBot became loose during long-term
but normal operation. We fixed the issue and notified the
manufacturer.

4) Device driver failure: The robot computer fails to
recognize a USB camera sometimes during the deployment,
and reconnect the USB connector did not solve the issue.
The only known working solution was to reboot the internal
computer, and we ended up replacing the camera with
another model.

Since hardware errors are usually hard to recover from
automatically, fail-safe is a critical design principle: the robot
should detect failures and take actions to prevent failure
propagation or further damage. Component-level monitoring
is helpful sometimes: A battery voltage monitor will prevent
the batteries from over-discharge, and a retry limit on the
docking action and a vibration sensor will prevent further
physical damage to the robot.

Because hardware malfunction is less usual, they are easy
to ignore and not covered by most test cases. In fact, the
TritonBot control software was programmed to give up and
report docking failure after five docking attempts, but the
higher-level control software immediately restarted docking
because the battery-level was still low. The hardware failures
lead us to the need for extensive testing, which requires a
fault injection/simulation mechanism to produce/reproduce
potential errors.

B. Network Connectivity

TritonBot accesses the Internet via a wireless connection
to reach cloud services, receive commands from operators,
and report status to the monitoring station. Since it roams

in a large area of the building and a campus-wide wireless
network already exists, setting up an ad hoc wireless network
for it is not worthwhile. Using an existing wireless infras-
tructure with multiple access points and broad coverage leads
us to a situation that (1) signal strength is not consistent in
all the locations, (2) the robot sometimes loses connection
when it roams between multiple access points, (3) network
is not secured.

We took a few measures to confront these issues. First,
we did a signal strength survey in the building and excluded
blind spots from the tour path. Besides, the robot checks
network connection every minute and resets its wireless
interface when there is a failure. We also installed a wireless
access point on the robot to provide “escape hatch” access
to the robot in case of unrecoverable connection failures.
Furthermore, we set up a firewall on the robot to block
unexpected incoming connections from the Internet.

C. Software Failures

In a developing system, software errors are frequent when
rolling out new features, improvements, or bug fixes. While
most of the software flaws disappear in the testing stage, the
remainders are usually hard to discover or even to reproduce.
However, they are easy to recover from by restarting the
program, and the loosely-coupled system architecture in
ROS enables such recovery mechanism without causing a
system-wide outage. Nevertheless, this mechanism requires
coordination between the software components. From our
experience, we have found two design principles are partic-
ularly useful to tolerate and recover from rare and transient
software errors:

1) Any component must tolerate temporary unavailability
of other components and should not propagate the
failure. They should resume working if the depending
component recovers.

2) Restarting a program shall always help it to enter a
clean and steady state. If a component fails in some
way and cannot recover, it is better to terminate and
restart the program than to remain in an unknown and
unresponsive state.

These two principles allow the system to tolerate transient
errors. In a typical scenario, the erroneous programs termi-
nate and return to a normal state; meanwhile, the counterparts
will wait until they recover rather than propagating the error.
Moreover, these design rules decouple the programs at the
application level, which allows programs to regularly restart
when the system is idle, as Google points out that “a slowly
crash looping task is usually preferable to a task that hasn’t
been restarted at all [21].” As a bonus, these design principles
also enables dynamic updating of the system at the cost of
temporary and short unavailability.

These two principles helped the robot running stable
for most of the time. But a slight violation of the first
principle caused unavailability of our system that it could
not automatically recover from: One day, the behavioral
control component tried to communicate with a logging
service that timed out, and the behavioral control stalled.
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The same symptom happened three times during the entire
month deployment, and we discovered the error message in
the last occurrence and fixed the control state machine.

This incident leads us to another lesson: we assumed the
reliability of some software components (the logging service
in this case) since they rarely fail. We are developing a
mechanism to inject errors into software components, which
will help discover potential design flaws.

D. Software Deployment

TritonBot’s ROS system is running about 50 nodes when
it is working, and more than half of them are in-house
customized software. Initially, we ran these programs directly
under a Linux system, but this method does not scale. As
we were adding more components to the system, software
dependencies started to conflict with each other, runtime
configurations scattered at multiple locations in the file
system, and software versions were hard to track. After
testing several solutions, we ended up using Linux containers
(Docker [22] specifically) to manage the robotic software in
TritonBot.

Linux containers provide operating-system-level virtual-
ization and allow building and shipping applications easily
as self-contained archives. Pioneer work introduced Linux
containers technology to robotics [23], but to the best of our
knowledge, TritonBot is the first robotic system that uses
Linux containers to manage the entire robotic software stack.
Every TritonBot robotic software component is running
inside a container, including the ROS master node and the
robot drivers. These containers share the host networking
stack to allow smooth communication. A container orches-
tration tool, docker-compose helps managing runtime
parameters. All the ROS runtime configurations, including
the roslaunch files, are collected in a single version-
control system, which allows the developers to trace the
complete change history of configuration change through
the robot’s life cycle. We arrange the container images in
a hierarchy so that some images share the same base image
with common libraries, and updating a base image will also
update its dependents.

In short, Linux containers help to manage robotic software
on a developing and scaling system, help to maintain high
availability, limit fault zones, and allow easy replication and
distribution of robotic software.

E. Navigation

TritonBot uses Cartographer [18] for localization and map
creation and uses the ROS navigation stack, “move base” to
move around. On top of the navigation stack, we created a
topological map to guide the robot to predefined routes, as
shown in Fig. 5. The topological map contains waypoints
and path: a waypoint represents a featured location such as
an intersection of aisles or a place of interest, and a path
between two waypoints is line-of-sight that the robot can
easily travel. A navigation planning service determines a
series of waypoints for the robot to go through before it

Fig. 5. The topological map that TritonBot uses to navigate. Waypoints
are marked with three-letter names, and paths connect the waypoints that
the robot can move between.

reaches a destination. Each path has an estimated travel time
and is updated when a new estimate is available.

The two major failure modes in TritonBot’s navigation be-
havior are localization failure and execution failure. Most 2D
SLAM software matches current laser scan with a pre-built
map to estimate the current location of the robot, and when
the robot is surrounded by many temporary obstacles (e.g.,
humans), it may match the observation with an incorrect
location. We only observed this failure once when the robot
was surrounded by about ten people, and the robot quickly
corrected the issue afterward as it moved around a bit and
gained more observations. A sudden change in the robot’s
location estimation is usually an indicator of a localization
failure. On the other hand, dynamic obstacles, especially
humans are the biggest challenge in robotic navigation. Some
users tried to block the way of the robot to test the robustness
of the robot. When TritonBot fails to move, it says “I need
some personal space to maneuver, can you please step back.”
In the most case, people will yield to the robot, and the robot
resumes after executing some recovery behavior.

Another lesson we learned from robot guiding person is
that the person sometimes leaves the robot in the middle of
a tour. As a result, the robot continues to introduce the place
of interests to nobody. Without full user study it is hard to
conclude why the users leave the robot, but this situation
hints that the robot should respond to the person leaving or
joining the tour. As an improvement, we are integrating leg
detection into the system and use it to confirm the person is
still around during the navigation.

TritonBot moved 9901.1 meters in the first month of
deployment. Among the 1, 722 attempts moving from a
location to another, 97.4% attempts were successful, and 44
attempts failed. Most of them are because of timeout (32
attempts) and move failures (8 attempts) due to dynamic
obstacles partially or fully blocking the robot’s path. Other
failures are because of cancellation command (three attempts,
expected behavior) or temporary unavailability in topological
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Fig. 6. (a): Speech recognition pipeline for TritonBot. Google Cloud
Speech client converts audio stream to transcripts, and intent extractors
interpret the transcript and generate intent candidates with confidence scores.
The intent selector chooses an intent candidate based on expected intent
type, time, and other criteria. The Intent selector also stops listening if
it can return a result. (b): Templates used in “name extractor.” Name
extractor is a template-based intent extractor that converts the response
to “what is your name?” to structural intent representation. Each word in
the template is regex<capture name>(weight), and the template is
matched against voice recognition result using longest common subsequence
algorithm to calculate a confidence score based on weight. Words with
capture name can be used to fill in some fields of an intent.

map service (one attempt). Moving from a location to another
requires traversal of several paths in the topological map
(Fig. 5), and TritonBot and BoxBot traversed 4, 876 paths.
Traveling path PHX-FYV and FYV-LIT caused 20 failures
in total. We did not collect enough data to conclude an exact
reason, but we did see some people trying to block the path
of the robot in this spacious aisle, and only walked away
when the robot requested space to maneuver.

F. Speech and Dialogue

TritonBot has a voice recognition pipeline that converts
audio stream to user intent data structure as shown in
Fig. 6(a). TritonBot uses Google Cloud Speech API to
convert voice input from the microphone [19], which returns
real-time interim results and rich metadata about the speech,
including a confidence score and start/end time for each of
the words in the utterance. A few intent extractors convert
utterance transcript to candidate intents. The intent selector
either yield an intent data structure or special intents for
“silence” and “not understand.” The intent selector also stops
the robot’s listening when it can return an expected result so
that the robot can respond quickly. Most of the current intent
extractors are implemented with matching the words in the
input sequence to regular expressions in a template sequence
using longest common subsequence algorithm, and Fig. 6(b)
shows an example.

An interesting observation is that sometimes people re-
spond to questions, especially yes-no questions, even before
the robot finishes talking. As a result, the robot misses
the response because it was not able to capture the very
first part of the utterance. In late deployment, we changed
synchronization mechanism to allow the voice recognition to
start 0.3 seconds before the robot finishes speaking according
to previous studies [24], so that the robot can capture the full
response from the human but almost none of the speech from
itself.

G. Face Recognition

The TritonBot has a head camera (Primesense Carmine
1.09) at 1.5 meters from the ground facing 15 degrees

ColorFERET Dataset

TritonBot and BoxBot
Face Database

Fig. 7. The distribution of cosine distance of the OpenFace embeddings,
between the faces of the same person and the faces of the different persons
in the ColorFERET [25] dataset and TritonBot and BoxBot’s face database.

upwards, but the camera mounted on BoxBot is at 1.2 meters
height facing about 30 degrees upwards. Both TritonBot
and BoxBot can see an undistorted face, but BoxBot cannot
detect people standing too close (less than 0.5 meters) from
the robot because of the tilt of the camera.

TritonBot uses deep neural networks based on Open-
face [17] to recognize visitors’ face. As a starting point,
we use the nearest neighbor to find the best match given a
face. When the cosine distance (d(A,B) = 1− A·B

‖A‖‖B‖ ) is
between the detected face and the candidate is greater than
a threshold, the face recognition reports an unknown face
indicating a stranger. The threshold was initially set to 0.5
by balancing false positive and false negatives on the Color-
FERET dataset [25], and we will adjust to reflect the actual
dataset for the next deployment. Fig. 7 shows the distribution
of cosine distance of the Openface embeddings of the same
person and different persons from the ColorFERET dataset,
and the actual faces TritonBot and BoxBot remember.

While TritonBot usually recalls the name of a seen per-
son, as expected the mis-classification ratio increased as
the database size is increased. One of the reasons is that
sometimes people face the robot sidewards, and the robot
could only see a side face, which is easy to confuse on
different people.

H. Logging

Logging in long-term autonomy robots provides opportu-
nities for data analysis, testing new software, and replaying
the scene. ROS provides a logging utility, rosbag to
log general communication during the robot operation. We
create a program to record a substantial portion of ROS
communication in TritonBot, including laser scanner data,
localization estimation, the command to move the base, etc.
Even though the robot only records rosbag files when
it is actively interacting with a person, we have collected
367.8 GB “rosbag” files in the first month of deployment.

Although “rosbag” records many details in ROS commu-
nication, it is far from ideal for recording internal states
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WaitingNot Working Interaction Guide Tour

Fig. 8. Working log of the robots. Feb 1, Feb 8, and morning Feb 13
came from TritonBot, and the others came from BoxBot. Blank indicates
the robot is under maintenance or taken to special events and the top-level
control software is not running, and light yellow background means the
robot is charging itself. The robots have worked for 108.7 hours (waiting,
interaction, and guiding tour), actively interacted with people for 22.1 hours
(interaction and guiding tour).

for software components in a long-term autonomy robot
because of two major flaws: (1) Changing the log record
fields definition in rosbag invalidates all previous logs,
which is inconvenient for an actively-developed long-term
autonomy robot. (2) rosbag is designed to capture the
communication between ROS components, and it is costly to
send massive internal states through network sockets when
they only meant to be written to a disk.

To overcome these deficiencies, we created a logging
library, “Universal Logger” to save internal states of both
ROS and non-ROS components. Universal Logger records
structural log data in an efficient and backward-compatible
Protocol Buffer [26] format. While maintaining strong-typed
structure, Protocol Buffer also allows adding new fields
without affecting previously serialized logs. Every robotic
component using Universal Logger writes logs to the disk
independently without going through any communication
interface. Also, Universal Logger automatically creates
new binary log files when date changes or a single file
is larger than a certain size, and we arrange these files
in directories with the creation date. For example, speech
recognition logs of Feb 27, 2018, on BoxBot is stored in
the following path: boxbot/2018/02/27/dialogue/
speech recognition/1519752112.pb.gz. The
logs are transferred to a storage server and removed from
the robots everyday to save the storage space. So far we
have collected 2.8 GB data in Universal Logger format in
the first-month deployment, and use them to study long-term
autonomy (and conclude the result in this paper).

I. Safety

Safety comes first when a robot is deployed in an open
environment. Mobile platforms of TritonBot and BoxBot
have a built-in hardware level safety mechanism that slows it
down when the laser scanner detects movements nearby, but
a grad student always monitors the robot physically close to
the robot for the first-month deployment to avoid unexpected

malfunctions. However, in the first-month deployment, the
guardian never engaged the emergency stop mechanism.
There was one case that a child tried to put his foot under
the robot, but the robot slowed down immediately, and the
child stepped back by instinct.

Requiring in-place human supervision harms the purpose
of long-term autonomy experiments, since the robot working
time is limited to the guardian’s work time. With more
confidence in robot’s safety, we will slowly move to remote
monitoring: we have created a private website to show
the vitals of the robot and the camera image for safety
monitoring purpose, and we deployed remote e-stop buttons
that engage run-stop mechanism on the robot via the control
network. We are also setting up bump sensors on the robot
to stop its motion when it hits something.

V. RESULTS

In the first-month initial deployment, TritonBot and
BoxBot together worked 18 days in total, skipping holidays
and special events in February 2018. TritonBot only operated
two and a half days because of maintenance and other
projects requiring the platform, but BoxBot worked for 15
and a half days. Fig. 8 shows the breakdown of the activity of
the robots. The two robots have been serving the guests for
108.7 hours in total, actively talked and walked with people
for 22.1 hours, and spent 8.25 hour in guiding people around.

TritonBot and BoxBot remembered 167 persons with
8, 681 face samples, and they did 97, 284 face detection and
recognitions. As for speech, they had been listening for 4.0
hours (2, 616 counts) and speaking for 10.7 hours (14, 037
counts). The robots greeted people 2950 times. It recognized
acquaintances 416 times, although the false positives are
not determinable at the current times. In the 434 attempts
of asking a visitors’ name, it heard a response 239 times.
The robots played 133 trivia games and asked 307 trivia
questions. Among the 292 answers, 224 were the correct
answer, 47 were wrong answers, and the user indicated they
did not know the answer in the other 21 responses.

The robot moves when they guide people to places of
interest or need to go to a charging dock. The robots
traveled 9.9 kilometers during the deployment, giving 150
tours in total. It attempted to move to a specific location (a
waypoint in the topological map, see Fig. 5) 1, 722 times,
and 1, 678 (97.4%) attempts were successful. To accomplish
these targets, it traveled 4, 876 edges in the topological map,
spent 6.1 hours in total.

VI. CONCLUSION

Long-term deployment reliability is one of the most crucial
parts of any feasible autonomous service robots. TritonBot
served as a study in robot-human interaction patterns and
long-term service viability before they can enter our homes
and businesses. This paper discussed TritonBot’s design
and summarized lessons we learned from the first-month
deployment of TritonBot.

Just like any engineered system, failures are unavoidable
in robotics. As a design principle, the robot design should
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prevent hardware failures from propagating and cause further
and/or permanent damage to the robot. Software failure
should be tolerated in a loosely-coupled system since most of
the failures can recover by restarting a program. More impor-
tantly, testing helps discover design flaws, and fault-injection/
simulation in hardware, software, and networking will help
to discover and test failures in robotics beforehand. System
engineering helps to reduce the effort of maintaining a
long-term autonomy robot development platform, and Linux
container significantly decreased the stress of managing a
scaling robot system.

The most significant challenge of robots is still human-
beings. From our observation, people tried to block the path
of the robot, try to fool the robot in talking, and ignores the
robot talking to itself when they leave. Sometimes humans
unintentionally face the robot side-wards, expect the robot
to respond when it is working on something else, or talk to
the robot in a way that it could not understand. Long-term
deployment exposes all of these cases and helps us design
better robot behavior.

Our future goal is to improve TritonBot to meet and
exceed the expectations of its users. We aim to formalize
research questions based on our first-month observations
and continue the long-term deployment of TritonBot to
study its autonomy for a longer timespan. After all, when a
robot enters our homes and businesses, it should not require
frequent maintenance like automobiles.
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