An FPGA-cluster-accelerated Match Engine for
Content-based Image Retrieval

Chen Liang, Chenlu Wu, Xuegong Zhou, Wei Cao*, Shengye Wang, Lingli Wang

State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203, P. R. China
*Email: caow@fudan.edu.cn

Abstract—In this paper, a high-performance match engine for
content-based image retrieval is proposed. Highly customized
floating-point(FP) units are designed, to provide the dynamic
range and precision of standard FP units, but with considerably
less area than standard FP units. Match calculation arrays with
various architectures and scales are designed and evaluated. An
CBIR system is built on a 12-FPGA cluster. Inter-FPGA
connections are based on standard 10-Gigabyte ethernet. The
whole FPGA cluster can compare a query image against 150
million library images within 10 seconds, basing on detailed local
features. Compared with the Intel Xeon 5650 server based
solution, our implementation is 11.35 times faster and 34.81 times
more power efficient.

Keywords—CBIR; FPGA cluster; high performance computing

I. Introduction

Nowadays the scale of medical and scientific media
databases are growing exponentially. Thus content-based
media search tools with high speed and high usability becomes
ever more important[1].

A typical content-based image retrieval (CBIR) system
requires off-line indexing and training to build a media feature
database and on-line matching to search the media feature
database and retrieve the corresponding images.

Query Image] i Image Database] X |

!

Ca

|

Feature Extraction Feature Extraction

) !

Feature Vectors] i Feature Database] E

{ Feature Search ;
Image Retrievial
£

2|

&
% Similar Images
a

Fig. 1. A typical content-based image retrieval (CBIR) system

978-1-4799-2198-0/13/$31.00 ©2013 IEEE

In this paper, we focus on the FPGA acceleration for the
feature search. Because the speed of feature search calculation
really determines the search delay of a query image, the scale
of the media database to use, and the number of feature
descriptors to include when indexing each image.

A high-performance match engine implemented on a high-
end Virtex-6 FPGA cluster is proposed in this work. Each
FPGA node features a finely tuned match calculation array
with highly customized floating-point units.

This paper is outlined as follows: Section I describes the
SURF-based match algorithm. Section III covers the proposed
CBIR system. Section 1V evaluates the whole system based on
performance, power efficiency, and quality of service (QOS).
Section V concludes this paper.

II. Match Algorithm for SURF-based CBIR

The SURF[2] algorithm provides better feature quality for
each image than traditional approaches[3]. In this paper,
FPGA acceleration for the matching process of SURF features
is addressed.

After the SURF-based feature extraction, an image frame
is represented by a sequence of feature point descriptors, and
each descriptor is a vector with 64 dimensions.

Two steps are required to judge whether an query image
matches a library image:

1) Check each of the feature points in the query image, to
see if they match the library image.

2) Check whether the number of matched feature points in
the query image is larger than a threshold.

To check if a query feature point matches a library image,
we look for the 2 nearest neighbors of the query feature point
among the feature points of the library image.

ol —

(3 (@-b)x(a-8)) O

i=l

The distance is measured by Euclid distance in the 64
dimension descriptor space as shown in (1). Suppose the first
nearest distance is FND and the second nearest distance is
SND, feature point match occurs when “ FND/SND < 0.65 7.
Practically, we can removed the square root operator from the

-422-

Euclid distance calculation and the feature point match
formula is changed to (2).

FND? < 0.42 * SND? @)

If the number of matched feature points in the query image
is larger than the threshold, an image match occurs.

II. The Proposed CBIR System

A. Overview of the Proposed CBIR System

Our CBIR solution consists of an Intel Xeon server, an
ethernet switch, a disk array and many FPGA nodes.

|
[XC6VSX475 DEV Board [
I | DDR3 DRAMs I | 10G Ehernet Chip A |
| “ XC6VSX475 FPGA l [
| | k: s ||
DDR3 Control @
| m|!
| MTCH_CHAIN128_WITH_INTF 3 |!
I M_CORE_CHAIN128_WRAP > E |
| [2 Q S o |l
= i i3 §
| n b 3 F 1|
I g M_CORE_CHAIN128 g 2 - |
I 40 41 41 |
| | RSLT_GEN |
| |
L im e e e i s Y s s S, it R d

Fig. 2. Block diagram of the proposed FPGA node

An FPGA node consists of a Xilinx Virtex-6 XC6VSX475
FPGA, a 10-Gigabyte ethernet module and two independent
DDR3 modules. The RTL design includes a match calculation
array, a DDR3 controller and an ethernet controller. The
whole design is controlled by state machines with no soft or
hard CPU cores involved.

During the off-line training stage, a tara-byte scale media
library composed of movies and pictures was indexed using
SURF[2] local features to form a media feature library.

When our match engine powers on, each FPGA node loads
a unique part of the feature library. The more nodes we use,
the larger our feature library can be. Currently, each node can
handle a 16GB feature library segment.

When the query images come in from CBIR system users,
the Xeon server extracts SURF features from the query images
and broadcasts the query feature packets to each FPGA node
through standard 10-Gigabyte ethernet.

When a query feature packet is received from the server,
the FPGA node loads the query vector into its match
calculation units and begins to traverse the 16G feature library
segment stored in its DDR3 memory. Each query frame is
compared against each library frame through a sequence of
distance calculations. The matched frame number pairs are
buffered and sent back as result packets.

When the Xeon server has collected all the matched frame
number pairs from each of the FPGA nodes, it retrieves the
corresponding images or video frames from the disk array and
sends them back to the CBIR system users.

Thank to the robustness of SURF[2] local features, our
CBIR system can retrieve more useful results than previous
systems[3][4]. For example, rotated versions of the query
image and larger images containing similar objects can be
retrieved. To some extent, we offer a more versatile
“similarity” definition in our implementation.

B. Designing Customized Floating-point Units

Several customized floating-point units are designed here.
Among them the most notably ones are the fused floating-
point (a-b)*(a-b) unmit, the 4-operand floating-point positive-
number adder, and the continuous floating-point accumulator.

1) The fused floating-point (a-b) *(a-b) unit. In this design,
floating-point substraction and squaring are pipelined and
some redundant rounding logic are discarded.

2) The 4-operand floating-point positive-number adder.
The total delay of a 4-operand floating-point addition is
reduced from 8 cycles to 6 cycles by using a fused 4-operand
floating-point adder. Since Euclid distance calculation only
includes positive number addition, the LODI[S5] logic is
removed, and thus more area is saved.

3) The continuous floating-point accumulator. In this work,
we have designed a customized floating-point accumulator, in
order to do accumulations efficiently and continuously, unlike
previous works[6].

Our continuous FP accumulator is 5-stage pipelined.
Instead of feeding back FP sum from stage 5 output to stage 1
input, we have implemented an internal feedback path.
Consequently, our accumulator can add one new FP input to
the current FP sum every cycle without stall or interleaving.

C. Tuning the Match Array

Two architectures are studied. Both of them are tightly
coupled with the system bandwidth.

1) The chain architecture. The key concept of the chain
architecture is to process each feature point in the query image
with a separate match core node. The whole match core is a
long chain of small-scale match core nodes.

Chain Architecture for SURF-based Match

M_CORE_NODE M_CORE_TAIL

iR

PT VEC: ?
S
.

i
suB_sar_dx | 1

M_CORE_NODE

il

____Q -

SuB_sar_4x | |

QUERY
PT VECs

ININ"3¥02™a

ININ"3¥09™a

C_CORE_MINI

PTN
MATCH RESULT

ININ 3802 a

|
PTO
MATCH RESULT
Fig. 3. Chain Architecture for SURF-based Feature Match

C_CORE_MINI

PTk
MATCH RESULT

2) The tree architecture. The tree architecture adopted
large-scale distance cores implemented with 64-operand adder
trees, so as to simplify the control logic and save area.

423~

Tree Architecture for SURF-based Match

;
M_CORE_TREE H
!
H
:

::1 LIB_LOAD | M_CORE_CTRL
DDR3
FIFO
D_CORE_0 H C_CORE_0
D_CORE_1 H C_CORE_1
ETH
QRY_LOAD

ETH
FIFO |~
IN

D_CORE_3 H C_CORE_3

i

D_CORE_4 H C_CORE_4

FIFO
b_core 2 Jof c_core 2 | = [

D_CORE_5 H C_CORE_5

D. Lower-power considerations

Firstly, in the chain-based match cores, the enable signals
of DFFs in the match nodes are dynamically controlled
according to the current work load.

Secondly, in the top-level CBIR system, we implement
fixed length feature query packets with Oxffffffff paddings.
Ox fTfTfTff stands for overflow in IEEE 754 standard FP format.
An OxfTfEfff (overflow) input will cause FP units to overflow,
and output an Oxffffffff (overflow). This technique naturally
limits the toggle rate of the unused calculation units, saving a
lot of power.

IV. Experimental Results

In this paper, we evaluates our design on three levels: the
match core level, the FPGA-node level, and the whole CBIR
system level. Performance, power consumption and system
usability are measured.

A. Performance evaluation of different match cores

Four match core designs are studied. They are the 96-point
chain core, the 128-point chain core, the 96-point tree core and
the 128-point tree core. All the designs are implemented on
Xilinx Virtex-6 XC6VSX475 FPGA with ISE 13.4.

TABLEL PERFORMANCE OF DIFFERENT MATCH CORES
96-pt chain 128-pt chain 96-pt tree 128-pt tree
DFF 139581 185980 120133 159047
LUT 136177 182106 132221 157213
(45%) (61%) (44%) (52%)
DSP 384 512 384 512
Fm 204.625 154.154 204.248 169.722
ax Mz Mz MHz Mz
Ftest 200MHz 150MHz 200MHz 166MHz
Disteale | |)G times | 12Gtimes | 1.2Gtimes | 1.3G times
per sec.

In Table IV, the 128-point tree design beats the 128-point
chain design. In large FPGA designs, interconnection plays a

key role in the final performance. Smaller and simpler designs
usually run faster.

However, the chain architecture has a relatively flexible
structure, which helps placement and route. When DDR3 and
Ethernet controllers are connected, the chain-based designs
would eventually beat the tree-based designs.

B. Power simulation of different match cores

In order to verify our low power techniques, we did some
power analyzes based on the post-place-and-route simulation
results, using Xilinx XPower tools.

The 96-point tree match core and chain match core were
analyzed with 4 levels of work load: 24 points per image, 48
points per image, 72 points per image and 96 points per image.

96-pt Tree Design Power Analysis

8
7
6
g5 m24
3 4 m48
E 3 72
2 — | m 96
il
0 —‘
clock logic signal dsp leakage
Fig. 5. Power analysis of the 96-pt tree design
(under different work load)
96-pt Chain Design Power Analysis
8
7 |
6
£S5 - m24
’cg'a 4 | mag
S 3 — 72
2 m ‘ | mg6
ot all all Ml

clock logic signal dsp leakage

Fig. 6. Power analysis of the 96-pt chain design
(under different work load)

We observed remarkable clock power difference in Fig. 6,
but not in Fig. 5. Because only the chain-based core employed
the flip-flop enable technique.

As shown in both Fig. 5 and Fig. 6, power consumption
varies significantly with the current workload. The special
query packet padding format limited the toggle rate of the
unused FP calculation units, which in turn saved a lot of
power.

C. Performance of the FPGA node design

Two FPGA node designs are implemented. One is based
on a 128-point chain match core. The other is based on a 96-
point tree match core.

The chain based FPGA node design can handle a query
image with 128 feature points. Its match core operates at
122MHz and calculates 128 Euclid distances every 16 cycles.

-424-

So it features 976M 64-dimension distance calculations per
second.

The tree based FPGA node design can handle a query
image with 96 feature points. Its match core also operates at
122MHz and calculates 96 Euclid distances every 16 cycles.
So it features 732M 64-dimension distance calculations per
second.

We’ve also implemented our match algorithm on an Intel
Xeon 5650 server with 6 cores and 12 threads. The program
performs best with 24-thread parallelism, and achieves 86M
64-dimension distance calculations per second.

So our chain based FPGA node design actually accelerates
the match process by 11.35 times against an 6-core Intel Xeon
server.

D. Power Efficiency of the FPGA node design

Power meters were connected on the power supply lines of
the Xeon server and FPGA nodes. The calculation devices, the
memory devices and the cooling devices had all been taken
into account, when power consumption was measured.

A 4-FPGA cluster with the 128-point chain design
consumes 205W power when doing feature match operation at
top speed. An Xeon server consumes 148W power when
doing feature match operation at top speed.

Power Consumption of A 4-FPGA Cluster

N
a
=)

209
Hidle

N
=]
5]
@
®

W 128-pt chain design (load: 64 pt per image)

=
[
(=]

[0 128-pt chain design (load: 96 pt per image)

Power(W)

-
o
=

0128-pt chain design (load: 128 pt per image)

o
o

M 96-pt tree design (load: 96 pt per image)

Fig. 7. Power Consumption of a 4-FPGA Cluster

With one Joule of energy, our FPGA node with the 128-
point chain design can accomplish 18.679 times of 64-
dimension distance calculation. By contrast, an Xeon server
can only do 0.593 times of such distance calculation with the
same energy.

So our chain based FPGA node design is actually 35 times
more power efficient than an 6-core Intel Xeon server.

Power Efficiency of Match Calculations

3

18.679

O
S8 —
o
=16 | —
g
814 S
g - B |BM Server(24 threads)
E B FPGA(96-pt tree design)
= O FPGA(128-pt chain design)
= 8 —
8
o € 1
g
g |
82 —
=] 0.593
0

Fig. 8. Power Efficiency of Feature Match Operation

E. System Usability and QoS

The whole operation flow of our CBIR system has been
described in Section Two. As mentioned before, our system is
scalable. It can traverse a larger feature database within a
given time, when more FPGA nodes are available to search
the additional feature database in parallel.

Our CBIR system operates with 12 FPGA nodes working
in parallel, and the total feature database size is about 192GB.
In our design, we extract 50 feature points from each library
image in average. And the 12-FPGA CBIR cluster holds an
index for 150 million library images in its memory.

All the FPGA nodes work in parallel to serve the same
query image search. It takes our chain based FPGA node
design 8.1 seconds to compare the query image features
against the 16GB on board memory. Taking into account
feature extraction delay and network delay, the total query
delay of our CBIR system is about 10 seconds.

V. Conclusion

In this paper, a high-performance feature matching engine
for content-base image retrieval systems is proposed. An
CBIR system is built with an Intel Xeon server and 12 FPGA
nodes.

Our 12-FPGA cluster can traverse 150 million images
indexed with high quality local features within 10 seconds and
provide numerous result images with a more versatile
“similarity” definition than previous CBIR solutions[3][4].

We hope to apply the proposed CBIR design to medical
care and scientific research applications, where both detailed
feature compare and short search delay are demanded.

Acknowledgment

This paper is supported by National Natural Science
Foundation of China(61131001, 61171011).

References

[1] Y. Liw, D. Zhang, G. Lu and W. Ma, “A survey of content-based image
retrieval with high-level semantics,” in Pattern Recognition, vol. 40, no.
1, pp. 262-282, January 2007.

[2] H. Bay, T. Tuytelaars, and L. V. Gool, “ Surf: speeded up robust
features,” European Conference on Computer Vision, pp. 404-417, May
2006.

[3] E. Castillo, C. Pedraza, J. Castillo, C. Camarero, J. L. Bosque, R.
Menendez and J. I. Martinez, “SMILE scientific parallel multiprocessing
based on low-cost reconfigurable hardware,” in IEEE Symposium on
Field-Programmable Custom Computing Machines, pp. 277-278, April
2008.

[4] A. Noumsi, S. Derrien and P. Quinton, “Acceleration of a content-based
image-retrieval application on the RDISK cluster,” in IEEE International
Parallel and Distributed Processing Symposium, April 2006.

[5] V. G. Oklobdzija, “An algorithmic and novel design of a leading zero
detector circuit; comparison with logic synthesis,” in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 1, pp. 124-
128, March 1994,

[6] M. R. Bodnar, J. R. Humphrey, P. F. Curt and D. W. Prather, “Floating-
point accumulation circuit for matrix applications,” in [EEE Symposium
on Field-Programmable Custom Computing Machines, pp. 303-304,
April 2006.

—-425-

